Copied to
clipboard

G = C424D14order 448 = 26·7

4th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C424D14, C4○D285C4, (C2×D28)⋊12C4, (C4×C28)⋊3C22, C4.83(C2×D28), Dic14⋊C42C2, D28.22(C2×C4), (C2×C4).147D28, (C2×C28).144D4, C28.303(C2×D4), C42⋊C24D7, C4.10(D14⋊C4), (C2×Dic14)⋊12C4, (C22×C14).78D4, C28.23(C22⋊C4), (C2×C28).794C23, C28.110(C22×C4), Dic14.23(C2×C4), C72(C42⋊C22), C4○D28.38C22, (C22×C4).113D14, C23.21(C7⋊D4), C4.Dic720C22, C22.25(D14⋊C4), (C22×C28).154C22, C4.68(C2×C4×D7), (C2×C4).46(C4×D7), (C2×C28).94(C2×C4), C2.20(C2×D14⋊C4), (C2×C4○D28).8C2, (C7×C42⋊C2)⋊4C2, (C2×C14).461(C2×D4), (C2×C4).45(C7⋊D4), C14.47(C2×C22⋊C4), (C2×C4.Dic7)⋊10C2, C22.27(C2×C7⋊D4), (C2×C4).708(C22×D7), (C2×C14).17(C22⋊C4), SmallGroup(448,539)

Series: Derived Chief Lower central Upper central

C1C28 — C424D14
C1C7C14C2×C14C2×C28C4○D28C2×C4○D28 — C424D14
C7C14C28 — C424D14
C1C4C22×C4C42⋊C2

Generators and relations for C424D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=ab2, dad=ab-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 756 in 154 conjugacy classes, 59 normal (41 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C7⋊C8, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C42⋊C22, C2×C7⋊C8, C4.Dic7, C4.Dic7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C4○D28, C2×C7⋊D4, C22×C28, Dic14⋊C4, C2×C4.Dic7, C7×C42⋊C2, C2×C4○D28, C424D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C4×D7, D28, C7⋊D4, C22×D7, C42⋊C22, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C2×D14⋊C4, C424D14

Smallest permutation representation of C424D14
On 112 points
Generators in S112
(1 21)(3 23)(5 25)(7 27)(9 15)(11 17)(13 19)(29 92 59 56)(30 43 60 93)(31 94 61 44)(32 45 62 95)(33 96 63 46)(34 47 64 97)(35 98 65 48)(36 49 66 85)(37 86 67 50)(38 51 68 87)(39 88 69 52)(40 53 70 89)(41 90 57 54)(42 55 58 91)(71 109)(73 111)(75 99)(77 101)(79 103)(81 105)(83 107)
(1 109 21 71)(2 110 22 72)(3 111 23 73)(4 112 24 74)(5 99 25 75)(6 100 26 76)(7 101 27 77)(8 102 28 78)(9 103 15 79)(10 104 16 80)(11 105 17 81)(12 106 18 82)(13 107 19 83)(14 108 20 84)(29 92 59 56)(30 93 60 43)(31 94 61 44)(32 95 62 45)(33 96 63 46)(34 97 64 47)(35 98 65 48)(36 85 66 49)(37 86 67 50)(38 87 68 51)(39 88 69 52)(40 89 70 53)(41 90 57 54)(42 91 58 55)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 32)(2 31)(3 30)(4 29)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 68)(16 67)(17 66)(18 65)(19 64)(20 63)(21 62)(22 61)(23 60)(24 59)(25 58)(26 57)(27 70)(28 69)(43 111)(44 110)(45 109)(46 108)(47 107)(48 106)(49 105)(50 104)(51 103)(52 102)(53 101)(54 100)(55 99)(56 112)(71 95)(72 94)(73 93)(74 92)(75 91)(76 90)(77 89)(78 88)(79 87)(80 86)(81 85)(82 98)(83 97)(84 96)

G:=sub<Sym(112)| (1,21)(3,23)(5,25)(7,27)(9,15)(11,17)(13,19)(29,92,59,56)(30,43,60,93)(31,94,61,44)(32,45,62,95)(33,96,63,46)(34,47,64,97)(35,98,65,48)(36,49,66,85)(37,86,67,50)(38,51,68,87)(39,88,69,52)(40,53,70,89)(41,90,57,54)(42,55,58,91)(71,109)(73,111)(75,99)(77,101)(79,103)(81,105)(83,107), (1,109,21,71)(2,110,22,72)(3,111,23,73)(4,112,24,74)(5,99,25,75)(6,100,26,76)(7,101,27,77)(8,102,28,78)(9,103,15,79)(10,104,16,80)(11,105,17,81)(12,106,18,82)(13,107,19,83)(14,108,20,84)(29,92,59,56)(30,93,60,43)(31,94,61,44)(32,95,62,45)(33,96,63,46)(34,97,64,47)(35,98,65,48)(36,85,66,49)(37,86,67,50)(38,87,68,51)(39,88,69,52)(40,89,70,53)(41,90,57,54)(42,91,58,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,32)(2,31)(3,30)(4,29)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,68)(16,67)(17,66)(18,65)(19,64)(20,63)(21,62)(22,61)(23,60)(24,59)(25,58)(26,57)(27,70)(28,69)(43,111)(44,110)(45,109)(46,108)(47,107)(48,106)(49,105)(50,104)(51,103)(52,102)(53,101)(54,100)(55,99)(56,112)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,98)(83,97)(84,96)>;

G:=Group( (1,21)(3,23)(5,25)(7,27)(9,15)(11,17)(13,19)(29,92,59,56)(30,43,60,93)(31,94,61,44)(32,45,62,95)(33,96,63,46)(34,47,64,97)(35,98,65,48)(36,49,66,85)(37,86,67,50)(38,51,68,87)(39,88,69,52)(40,53,70,89)(41,90,57,54)(42,55,58,91)(71,109)(73,111)(75,99)(77,101)(79,103)(81,105)(83,107), (1,109,21,71)(2,110,22,72)(3,111,23,73)(4,112,24,74)(5,99,25,75)(6,100,26,76)(7,101,27,77)(8,102,28,78)(9,103,15,79)(10,104,16,80)(11,105,17,81)(12,106,18,82)(13,107,19,83)(14,108,20,84)(29,92,59,56)(30,93,60,43)(31,94,61,44)(32,95,62,45)(33,96,63,46)(34,97,64,47)(35,98,65,48)(36,85,66,49)(37,86,67,50)(38,87,68,51)(39,88,69,52)(40,89,70,53)(41,90,57,54)(42,91,58,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,32)(2,31)(3,30)(4,29)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,68)(16,67)(17,66)(18,65)(19,64)(20,63)(21,62)(22,61)(23,60)(24,59)(25,58)(26,57)(27,70)(28,69)(43,111)(44,110)(45,109)(46,108)(47,107)(48,106)(49,105)(50,104)(51,103)(52,102)(53,101)(54,100)(55,99)(56,112)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,98)(83,97)(84,96) );

G=PermutationGroup([[(1,21),(3,23),(5,25),(7,27),(9,15),(11,17),(13,19),(29,92,59,56),(30,43,60,93),(31,94,61,44),(32,45,62,95),(33,96,63,46),(34,47,64,97),(35,98,65,48),(36,49,66,85),(37,86,67,50),(38,51,68,87),(39,88,69,52),(40,53,70,89),(41,90,57,54),(42,55,58,91),(71,109),(73,111),(75,99),(77,101),(79,103),(81,105),(83,107)], [(1,109,21,71),(2,110,22,72),(3,111,23,73),(4,112,24,74),(5,99,25,75),(6,100,26,76),(7,101,27,77),(8,102,28,78),(9,103,15,79),(10,104,16,80),(11,105,17,81),(12,106,18,82),(13,107,19,83),(14,108,20,84),(29,92,59,56),(30,93,60,43),(31,94,61,44),(32,95,62,45),(33,96,63,46),(34,97,64,47),(35,98,65,48),(36,85,66,49),(37,86,67,50),(38,87,68,51),(39,88,69,52),(40,89,70,53),(41,90,57,54),(42,91,58,55)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,32),(2,31),(3,30),(4,29),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,68),(16,67),(17,66),(18,65),(19,64),(20,63),(21,62),(22,61),(23,60),(24,59),(25,58),(26,57),(27,70),(28,69),(43,111),(44,110),(45,109),(46,108),(47,107),(48,106),(49,105),(50,104),(51,103),(52,102),(53,101),(54,100),(55,99),(56,112),(71,95),(72,94),(73,93),(74,92),(75,91),(76,90),(77,89),(78,88),(79,87),(80,86),(81,85),(82,98),(83,97),(84,96)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28AP
order122222244444444444777888814···1414···1428···2828···28
size1122228281122244442828222282828282···24···42···24···4

82 irreducible representations

dim1111111122222222244
type+++++++++++
imageC1C2C2C2C2C4C4C4D4D4D7D14D14C4×D7D28C7⋊D4C7⋊D4C42⋊C22C424D14
kernelC424D14Dic14⋊C4C2×C4.Dic7C7×C42⋊C2C2×C4○D28C2×Dic14C2×D28C4○D28C2×C28C22×C14C42⋊C2C42C22×C4C2×C4C2×C4C2×C4C23C7C1
# reps1411122431363121266212

Matrix representation of C424D14 in GL4(𝔽113) generated by

112000
0100
00150
00098
,
98000
09800
00150
00015
,
06400
64000
00083
00830
,
00083
00830
06400
64000
G:=sub<GL(4,GF(113))| [112,0,0,0,0,1,0,0,0,0,15,0,0,0,0,98],[98,0,0,0,0,98,0,0,0,0,15,0,0,0,0,15],[0,64,0,0,64,0,0,0,0,0,0,83,0,0,83,0],[0,0,0,64,0,0,64,0,0,83,0,0,83,0,0,0] >;

C424D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4D_{14}
% in TeX

G:=Group("C4^2:4D14");
// GroupNames label

G:=SmallGroup(448,539);
// by ID

G=gap.SmallGroup(448,539);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,422,387,58,1123,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a*b^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽